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Abstract: This is a long but simple proof of Tychonoff’s
theorem. It is meant to mimic a Cantor diagonalization argu-
ment: Given an open cover O (of the product space X) which
has no finite subcover, the argument inductively picks a point
in each coordinate space so that the resulting tuple is a point
in the product space which is not, in fact, covered by O after
all.

1: Example. Sequential compactness is not preserved
under arbitrary Cartesian product. ♦

Proof. Let S be the set {−1, 0, 1}N. Set Y :=
{−1, 0, 1} equipped with the discrete topology and
let X := Y S have product topology. Consider the
sequence (((xn)))

∞
n=0 ⊂ X defined by

xn(s) := s(n) .

No subsequence of (((xn)))
∞
1 is convergent. For sup-

pose f : N → N is a strictly increasing function and
consider the subsequence

(((
xf(k)

)))∞
k=0. Let s denote the

element of S defined by

s(n) :=

{
0 if n /∈ Range(f);
[ 1]k if n = f(k).

}

Now
(((
xf(k)(s)

)))∞
k=0 is not a convergent sequence in Y ,

as

xf(k)(s)
def
== s

(
f(k)

)
= [ 1]k

shows with a vengeance. �

We establish some preliminary lemmas.

2: Lemma. If X and Y are compact spaces then
X × Y is compact. ♦

Proof. Let O be an open cover of X × Y . By replac-
ing each U ∈ O by the collection of open rectangles
A×B ⊂ U we may without loss of generality assume
that every member of O is a rectangle.

Fix x ∈ X. Since Y is compact, so is {x}×Y . Thus
there is a finite subcollection F ⊂ O such that

{x} × Y ⊂
⋃{

A×B
∣∣ A×B ∈ F & A 3 x

}
.

Define I(x) to be the open set
⋂
{A | A×B ∈ F}.

Evidently

{x} × Y ⊂ I(x)× Y

⊂
⋃{

A×B
∣∣ A×B ∈ F

}
.

By compactness ofX there exists a finite subset Fin ⊂
X such that

⋃
x∈Fin

I(x) equals X. Writing the above F

as Fx we have that{
A×B

∣∣ x ∈ Fin & A×B ∈ Fx
}

is a finite subcover of O. �

Definition. Say that an open set A ⊂ X × Y is X-
open if it is of the form X′ × Y , where X′ is an open
subset of X. For A ⊂ X × Y , let PA denote the
unique maximum X-open subset of A, that is, the
union of all X-open subsets of A. �

Henceforth letters α, β, λ and γ denote ordinals
which are less than Λ, another ordinal.

3: Lemma. Suppose Y is compact and Λ is some
ordinal.

i: If {x}×Y ⊂ U , where U is an open subset of
X×Y , then {x}×Y ⊂ PU .

ii: Suppose {Uβ | β ∈ Λ} is an increasing chain of
open subsets of X×Y . Then⋃

↗

β∈Λ

P
(
Uβ
)

= P
( ⋃

↗

β∈Λ

Uβ
)
. ♦

Remark. Above, we used the symbol “
⋃
↗” to indicated

an increasing union, i.e, α < β implies Uα ⊂ Uβ .
Note that (3ii) need not hold if the Uβ-sets fail to

be open. For example, let Y be a singleton, X be the
reals and (((qn)))

∞
1 be an enumeration of the rationals.

Now

Un := Rr {qn, qn+1, qn+2 . . . }

as no interior, P(Un) = ∅. And U1 ⊂ U2 ⊂ . . . . Yet
P(
⋃
n U

n) = P(R) = R. �
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Proof of (i). For each y ∈ Y there exists A(y) an open
subset of X, and B(y) an open subset of Y , for which
the ordered-pair

〈x, y〉 ∈ A(y)×B(y) ⊂ U .

By compactness of Y , there is a finite subset F ⊂ Y
such that Y =

⋃
y∈F B(y). Now I :=

⋂
y∈F A(y) is an

open set owning x. Therefore

I×Y ⊂
⋃
y∈F

A(y)×B(y) ⊂ U ,

and so {x}×Y ⊂ I×Y ⊂ PU . �

Proof of (ii). (In the sequel, the convention is that any
unconstrained indexing ordinal, in this case “β”, ranges over
all β ∈ Λ.) Since PUβ ⊂ Uβ , the union

⋃
β PUβ is

an X-open subset of
⋃
β U

β . Thus we have the “⊂”
direction of (ii).

Conversely, suppose x ∈ X is such that {x}×Y ⊂
P
(⋃

β U
β
)
. Then {x}×Y ⊂

⋃
β U

β and so Y =⋃
β B

β , where Bβ denotes the subset of Y such that
{x}×Bβ = [{x}×Y ]∩Uβ . This cross-section Bβ is an
open subset of Y by definition of the product topol-
ogy. By compactness of Y , there exists a finite set
F ⊂ Λ such that Y =

⋃
β∈F B

β . But
{
Uβ

∣∣ β < Λ
}

is an increasing collection and therefore
{
Bβ
}
β
is a

collection which increases. Hence⋃
β∈F

Bβ = Bµ , where µ := Max(F )
note
< Λ .

Thus {x}×Y ⊂ Uµ and so, (i) tells us, {x}×Y ⊂
P(Uµ). Consequently

⋃
β P(Uβ) ⊃ {x}×Y . This gives

the “⊃” direction in (ii). �

The induction proof
For each ordinal α let Y α be some compact space and
let Λ be the minimal ordinal such that, for the sake of
contradiction, the product space X :=

⊗
α∈Λ Y

α fails
to be compact. By lemma 2 we know that Λ must
be a limit ordinal. For each ordinal λ ≤ γ define the
product space

λXγ :=
⊗{

Y α
∣∣ λ ≤ α < γ

}
.

Let Xα abbreviate 0Xα and let αX stand for αXΛ. A
set A ⊂ X is α-open if it is of the form B × αX for
some open B ⊂ Xα. Let Pα(A) denote the unique
maximum α-open subset of A. If λ < γ then any
λ-open set is a fortiori γ-open.

4: Proposition. For open sets A,B ⊂ X and ordinals
α, λ, γ:

a: A ⊂ B =⇒ PαA ⊂ PαB.

b: λ ≤ γ =⇒ Pλ(A) ⊂ Pγ(A).

c: λ ≤ γ =⇒ Pλ ◦ Pγ = Pλ. ♦

Proof of (c). Applying Pλ to both sides of the in-
clusion Pγ(A) ⊂ A yields Pλ

(
Pγ(A)

)
⊂ Pλ(A), by

part (a). Conversely, applying Pλ to both sides of the
conclusion of (b) yields

Pλ
(
Pγ(A)

)
⊃ Pλ

(
PλA

)
= Pλ(A)

by (a). Thus Pλ(PγA) = Pλ(A). �

Setting up a contradiction
We now proceed to contradict the assumption that
Λ was the smallest ordinal such that XΛ is non-
compact. Henceforth let α, β, γ be ordinals ranging
over all of [0 ..Λ).

Simplifying the open cover

Presume that O is an open cover of X. Without loss
of generality we can replace each U ∈ O by all of the
finite dimensional open boxes which are subsets of U .
So now, for each set E ∈ O, there exists α < Λ such
that E is α-open. Thus

⋃
α V

α =
⋃

(O), where V α is
the α-open set

V α :=
⋃{

E ∈ O
∣∣ E is α-open

}
.

It suffices to show, for some α, that V α = X; for then{
E ∈ O

∣∣ E is α-open
}
is effectively an open cover of

the compact space Xα. WLOG, then, O = {V α |
α ∈ Λ}. The improvement is that, now, O is an in-
creasing chain of sets.
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A second simplification

Define Uα :=
⋃
↗
β∈Λ Pα(V β). By the foregoing propo-

sition, {Uα}α∈Λ is an increasing chain. Since

Uα ⊃ P
(
V α) ⊃ V α ,

we have that
⋃
α U

α =
⋃

(O). Now suppose we could
exhibit an α < Λ such that Uα = X. Then the col-
lection

C := {Pα(V β) | β ∈ Λ}

is an open cover of X. But the “Xα component” of
the members of C form an open cover of the compact
spaceXα; thus it has finite subcover. The correspond-
ing sets in C consequently form a finite cover of X.
Thus the corresponding finite collection of sets V β is
then a subcover of O.

Since we need but show that some Uα equals X, we
can now WLOG assume that our cover is

O =
{
Uα

∣∣ α ∈ Λ
}
, which is an increasing

chain of α-open sets.
5:

The improvement of the {Uα}α over the {V α}α is that

∀λ ≤ γ : Uλ = Pλ
(
Uγ
)
.5b:

This follows immediately from the computation

Uλ
def
==
⋃
↗

β

Pλ
(
V β) =

⋃
↗

β

Pλ
(
Pγ(V β)

)
by (4c)

= Pλ
(⋃

↗

β

Pγ(V β)
) from

Lemma (3ii)

def
== Pλ(Uγ) .

Also note that

For each limit ordinal α:
⋃
λ∈α

Uλ = Uα .5c:

For let U represent Uα, but viewed as an open subset
of Xα. So in light of (5b) we need but show that⋃
λ∈α PλU ⊃ U ; the “⊂” direction being trivial. Fix

an x ∈ U . By definition of the product topology,
x ∈

⊗
λ∈α Ŷ

λ ⊂ U where Ŷ λ is an open subset of Y λ

with Ŷ λ = Y λ for all λ outside of some finite index
set F ⊂ α. Thus µ := Max(F ) is less than α. Hence
x ∈ Pµ(U), completing the argument.

Obtaining a contradiction

Regard the symbol xα, below, as a point in Xα. We
shall inductively construct such points, by extension,
via the following.

There is an ordered set xα = 〈yλ | λ ∈
α〉, with each yλ a point in the compact
space Y λ, such that
{xα} × αX ⊂ Xr Uα

and satisfying the consistency condition:
λ < α =⇒ xλ ⊂ xα.

M(α):

Establishing this will complete the proof of Ty-
chonoff’s theorem by showing that O did not cover X
after all: For define a point x :=

⋃
α∈Λ xα; by the

consistency condition this is a point in X. Thus

x ∈ {xα} × αX ⊂ Xr Uα ,

for each α ∈ Λ. Hence x ∈ Xr
⋃
α U

α = Xr
⋃

(O).

Proof of M(α). Argue by induction on α. If α is a
limit ordinal then define xα to be

⋃
λ∈α xλ. Then, by

M(α), the point xα ∈ {xλ} × λX and so

{xα} × αX ⊂ {xλ} × λX ⊂ Xr Uλ .

Hence {xα}× αX ⊂ Xr
⋃
λ∈α U

λ, which equals Xr
Uα by (5c).

Conversely, suppose α is a successor ordinal α =
β+1. Were {xβ}×βX a subset of Uβ+1 then, by (3i),

{xβ} × βX ⊂ Pβ
(
Uβ+1) = Uβ .

This contradicts M(β). Consequently, there exists
a point y ∈ Y β such that 〈xβ, y〉 × β+1X is not a
subset of Uβ+1; hence (since Uβ+1 is [β + 1]-open) it is
disjoint from Uβ+1. So defining xβ+1 to be 〈xβ, y〉
establishes M(β+1). Whew! �
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