

The World's Longest Proof of Tychonoff's Theorem

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 1 February, 2022 (at 19:36)

ABSTRACT: This is a long but simple proof of Tychonoff's theorem. It is meant to mimic a Cantor diagonalization argument: Given an open cover \mathcal{O} (of the product space \mathbf{X}) which has no finite subcover, the argument inductively picks a point in each coordinate space so that the resulting tuple is a point in the product space which is not, in fact, covered by \mathcal{O} after all.

1: Example. Sequential compactness is not preserved under arbitrary Cartesian product. \diamond

Proof. Let \mathbb{S} be the set $\{-1, 0, 1\}^{\mathbb{N}}$. Set $Y := \{-1, 0, 1\}$ equipped with the discrete topology and let $X := Y^{\mathbb{S}}$ have product topology. Consider the sequence $(x_n)_{n=0}^{\infty} \subset \mathbf{X}$ defined by

$$x_n(s) := s(n).$$

No subsequence of $(x_n)_{1}^{\infty}$ is convergent. For suppose $f: \mathbb{N} \rightarrow \mathbb{N}$ is a strictly increasing function and consider the subsequence $(x_{f(k)})_{k=0}^{\infty}$. Let s denote the element of \mathbb{S} defined by

$$s(n) := \begin{cases} 0 & \text{if } n \notin \text{Range}(f); \\ [-1]^k & \text{if } n = f(k). \end{cases}$$

Now $(x_{f(k)}(s))_{k=0}^{\infty}$ is not a convergent sequence in Y , as

$$x_{f(k)}(s) \stackrel{\text{def}}{=} s(f(k)) = [-1]^k$$

shows with a vengeance. \diamond

We establish some preliminary lemmas.

2: Lemma. If X and Y are compact spaces then $X \times Y$ is compact. \diamond

Proof. Let \mathcal{O} be an open cover of $X \times Y$. By replacing each $U \in \mathcal{O}$ by the collection of open rectangles $A \times B \subset U$ we may without loss of generality assume that every member of \mathcal{O} is a rectangle.

Fix $x \in \mathbf{X}$. Since Y is compact, so is $\{x\} \times Y$. Thus there is a finite subcollection $\mathcal{F} \subset \mathcal{O}$ such that

$$\{x\} \times Y \subset \bigcup \{A \times B \mid A \times B \in \mathcal{F} \text{ & } A \ni x\}.$$

Define $I(x)$ to be the open set $\bigcap \{A \mid A \times B \in \mathcal{F}\}$. Evidently

$$\begin{aligned} \{x\} \times Y &\subset I(x) \times Y \\ &\subset \bigcup \{A \times B \mid A \times B \in \mathcal{F}\}. \end{aligned}$$

By compactness of X there exists a finite subset $\text{Fin} \subset \mathbf{X}$ such that $\bigcup_{x \in \text{Fin}} I(x)$ equals X . Writing the above \mathcal{F} as \mathcal{F}_x we have that

$$\{A \times B \mid x \in \text{Fin} \text{ & } A \times B \in \mathcal{F}_x\}$$

is a finite subcover of \mathcal{O} . \diamond

Definition. Say that an open set $A \subset X \times Y$ is X -open if it is of the form $\mathbf{X}' \times Y$, where \mathbf{X}' is an open subset of X . For $A \subset X \times Y$, let $\mathbb{P}A$ denote the unique maximum X -open subset of A , that is, the union of all X -open subsets of A . \square

Henceforth letters α, β, λ and γ denote ordinals which are less than Λ , another ordinal.

3: Lemma. Suppose Y is compact and Λ is some ordinal.

i: If $\{x\} \times Y \subset U$, where U is an open subset of $X \times Y$, then $\{x\} \times Y \subset \mathbb{P}U$.

ii: Suppose $\{U^{\beta} \mid \beta \in \Lambda\}$ is an increasing chain of open subsets of $X \times Y$. Then

$$\bigcup_{\beta \in \Lambda} \mathbb{P}(U^{\beta}) = \mathbb{P}\left(\bigcup_{\beta \in \Lambda} U^{\beta}\right). \quad \diamond$$

Remark. Above, we used the symbol “ \bigcup ” to indicated an increasing union, i.e, $\alpha < \beta$ implies $U^{\alpha} \subset U^{\beta}$.

Note that (3ii) need not hold if the U^{β} -sets fail to be open. For example, let Y be a singleton, X be the reals and $(q_n)_{1}^{\infty}$ be an enumeration of the rationals. Now

$$U^n := \mathbb{R} \setminus \{q_n, q_{n+1}, q_{n+2}, \dots\}$$

as no interior, $\mathbb{P}(U^n) = \emptyset$. And $U^1 \subset U^2 \subset \dots$. Yet $\mathbb{P}(\bigcup_n U^n) = \mathbb{P}(\mathbb{R}) = \mathbb{R}$. \square

Proof of (i). For each $y \in Y$ there exists $A(y)$ an open subset of X , and $B(y)$ an open subset of Y , for which the ordered-pair

$$\langle x, y \rangle \in A(y) \times B(y) \subset U.$$

By compactness of Y , there is a finite subset $F \subset Y$ such that $Y = \bigcup_{y \in F} B(y)$. Now $I := \bigcap_{y \in F} A(y)$ is an open set owning x . Therefore

$$I \times Y \subset \bigcup_{y \in F} A(y) \times B(y) \subset U,$$

and so $\{x\} \times Y \subset I \times Y \subset \mathbb{P}U$. ◆

Proof of (ii). (In the sequel, the convention is that any unconstrained indexing ordinal, in this case “ β ”, ranges over all $\beta \in \Lambda$.) Since $\mathbb{P}U^\beta \subset U^\beta$, the union $\bigcup_\beta \mathbb{P}U^\beta$ is an X -open subset of $\bigcup_\beta U^\beta$. Thus we have the “ \subset ” direction of (ii).

Conversely, suppose $x \in \mathbf{X}$ is such that $\{x\} \times Y \subset \mathbb{P}(\bigcup_\beta U^\beta)$. Then $\{x\} \times Y \subset \bigcup_\beta U^\beta$ and so $Y = \bigcup_\beta B^\beta$, where B^β denotes the subset of Y such that $\{x\} \times B^\beta = [\{x\} \times Y] \cap U^\beta$. This cross-section B^β is an open subset of Y by definition of the product topology. By compactness of Y , there exists a finite set $F \subset \Lambda$ such that $Y = \bigcup_{\beta \in F} B^\beta$. But $\{U^\beta \mid \beta < \Lambda\}$ is an increasing collection and therefore $\{B^\beta\}_\beta$ is a collection which increases. Hence

$$\bigcup_{\beta \in F} B^\beta = B^\mu, \quad \text{where } \mu := \text{Max}(F) \stackrel{\text{note}}{<} \Lambda.$$

Thus $\{x\} \times Y \subset U^\mu$ and so, (i) tells us, $\{x\} \times Y \subset \mathbb{P}(U^\mu)$. Consequently $\bigcup_\beta \mathbb{P}(U^\beta) \supset \{x\} \times Y$. This gives the “ \supset ” direction in (ii). ◆

The induction proof

For each ordinal α let Y^α be some compact space and let Λ be the minimal ordinal such that, for the sake of contradiction, the product space $\mathbf{X} := \bigotimes_{\alpha \in \Lambda} Y^\alpha$ fails to be compact. By lemma 2 we know that Λ must be a limit ordinal. For each ordinal $\lambda \leq \gamma$ define the product space

$${}_\lambda \mathbf{X}_\gamma := \bigotimes \{Y^\alpha \mid \lambda \leq \alpha < \gamma\}.$$

Let \mathbf{X}_α abbreviate ${}_\alpha \mathbf{X}_\alpha$ and let ${}_\alpha \mathbf{X}$ stand for ${}_\alpha \mathbf{X}_\Lambda$. A set $A \subset \mathbf{X}$ is α -open if it is of the form $B \times {}_\alpha \mathbf{X}$ for some open $B \subset \mathbf{X}_\alpha$. Let $\mathbb{P}^\alpha(A)$ denote the unique maximum α -open subset of A . If $\lambda < \gamma$ then any λ -open set is *a fortiori* γ -open.

4: Proposition. *For open sets $A, B \subset \mathbf{X}$ and ordinals α, λ, γ :*

a: $A \subset B \implies \mathbb{P}^\alpha A \subset \mathbb{P}^\alpha B$.

b: $\lambda \leq \gamma \implies \mathbb{P}^\lambda(A) \subset \mathbb{P}^\gamma(A)$.

c: $\lambda \leq \gamma \implies \mathbb{P}^\lambda \circ \mathbb{P}^\gamma = \mathbb{P}^\lambda$. ◊

Proof of (c). Applying \mathbb{P}^λ to both sides of the inclusion $\mathbb{P}^\gamma(A) \subset A$ yields $\mathbb{P}^\lambda(\mathbb{P}^\gamma(A)) \subset \mathbb{P}^\lambda(A)$, by part (a). Conversely, applying \mathbb{P}^λ to both sides of the conclusion of (b) yields

$$\mathbb{P}^\lambda(\mathbb{P}^\gamma(A)) \supset \mathbb{P}^\lambda(\mathbb{P}^\lambda A) = \mathbb{P}^\lambda(A)$$

by (a). Thus $\mathbb{P}^\lambda(\mathbb{P}^\gamma A) = \mathbb{P}^\lambda(A)$. ◆

Setting up a contradiction

We now proceed to contradict the assumption that Λ was the smallest ordinal such that \mathbf{X}_Λ is non-compact. Henceforth let α, β, γ be ordinals ranging over all of $[0.. \Lambda]$.

Simplifying the open cover

Presume that \mathcal{O} is an open cover of \mathbf{X} . Without loss of generality we can replace each $U \in \mathcal{O}$ by all of the finite dimensional open boxes which are subsets of U . So now, for each set $E \in \mathcal{O}$, there exists $\alpha < \Lambda$ such that E is α -open. Thus $\bigcup_\alpha V^\alpha = \bigcup(\mathcal{O})$, where V^α is the α -open set

$$V^\alpha := \bigcup \{E \in \mathcal{O} \mid E \text{ is } \alpha\text{-open}\}.$$

It suffices to show, for some α , that $V^\alpha = \mathbf{X}$; for then $\{E \in \mathcal{O} \mid E \text{ is } \alpha\text{-open}\}$ is effectively an open cover of the compact space \mathbf{X}_α . WLOG, then, $\mathcal{O} = \{V^\alpha \mid \alpha \in \Lambda\}$. The improvement is that, now, \mathcal{O} is an increasing chain of sets.

A second simplification

Define $U^\alpha := \bigcup_{\beta \in \Lambda} \mathbb{P}^\alpha(V^\beta)$. By the foregoing proposition, $\{U^\alpha\}_{\alpha \in \Lambda}$ is an increasing chain. Since

$$U^\alpha \supset \mathbb{P}(V^\alpha) \supset V^\alpha,$$

we have that $\bigcup_\alpha U^\alpha = \bigcup(\emptyset)$. Now suppose we could exhibit an $\alpha < \Lambda$ such that $U^\alpha = \mathbf{X}$. Then the collection

$$\mathcal{C} := \{\mathbb{P}^\alpha(V^\beta) \mid \beta \in \Lambda\}$$

is an open cover of \mathbf{X} . But the “ \mathbf{X}_α component” of the members of \mathcal{C} form an open cover of the compact space \mathbf{X}_α ; thus it has finite subcover. The corresponding sets in \mathcal{C} consequently form a finite cover of \mathbf{X} . Thus the corresponding finite collection of sets V^β is then a subcover of \emptyset .

Since we need but show that some U^α equals \mathbf{X} , we can now WLOG assume that our cover is

5: $\emptyset = \{U^\alpha \mid \alpha \in \Lambda\}$, which is an increasing chain of α -open sets.

The improvement of the $\{U^\alpha\}_\alpha$ over the $\{V^\alpha\}_\alpha$ is that

$$5b: \quad \forall \lambda \leq \gamma: \quad U^\lambda = \mathbb{P}^\lambda(U^\gamma).$$

This follows immediately from the computation

$$\begin{aligned} U^\lambda &\stackrel{\text{def}}{=} \bigcup_\beta \mathbb{P}^\lambda(V^\beta) = \bigcup_\beta \mathbb{P}^\lambda(\mathbb{P}^\gamma(V^\beta)) \quad \text{by (4c)} \\ &= \mathbb{P}^\lambda \left(\bigcup_\beta \mathbb{P}^\gamma(V^\beta) \right) \quad \text{from Lemma (3ii)} \\ &\stackrel{\text{def}}{=} \mathbb{P}^\lambda(U^\gamma). \end{aligned}$$

Also note that

$$5c: \quad \text{For each limit ordinal } \alpha: \quad \bigcup_{\lambda \in \alpha} U^\lambda = U^\alpha.$$

For let U represent U^α , but viewed as an open subset of \mathbf{X}_α . So in light of (5b) we need but show that $\bigcup_{\lambda \in \alpha} \mathbb{P}^\lambda U \supset U$; the “ \subset ” direction being trivial. Fix an $x \in U$. By definition of the product topology, $x \in \bigotimes_{\lambda \in \alpha} \hat{Y}^\lambda \subset U$ where \hat{Y}^λ is an open subset of Y^λ with $\hat{Y}^\lambda = Y^\lambda$ for all λ outside of some finite index set $F \subset \alpha$. Thus $\mu := \text{Max}(F)$ is less than α . Hence $x \in \mathbb{P}^\mu(U)$, completing the argument.

Obtaining a contradiction

Regard the symbol x_α , below, as a point in \mathbf{X}_α . We shall inductively construct such points, by extension, via the following.

There is an ordered set $x_\alpha = \langle y^\lambda \mid \lambda \in \alpha \rangle$, with each y^λ a point in the compact space Y^λ , such that
 $M(\alpha)$: $\{x_\alpha\} \times {}_\alpha \mathbf{X} \subset \mathbf{X} \setminus U^\alpha$
and satisfying the consistency condition:
 $\lambda < \alpha \implies x_\lambda \subset x_\alpha$.

Establishing this will complete the proof of Tychonoff's theorem by showing that \emptyset did not cover \mathbf{X} after all: For define a point $x := \bigcup_{\alpha \in \Lambda} x_\alpha$; by the consistency condition this is a point in \mathbf{X} . Thus

$$x \in \{x_\alpha\} \times {}_\alpha \mathbf{X} \subset \mathbf{X} \setminus U^\alpha,$$

for each $\alpha \in \Lambda$. Hence $x \in \mathbf{X} \setminus \bigcup_\alpha U^\alpha = \mathbf{X} \setminus \bigcup(\emptyset)$.

Proof of $M(\alpha)$. Argue by induction on α . If α is a limit ordinal then define x_α to be $\bigcup_{\lambda \in \alpha} x_\lambda$. Then, by $M(\alpha)$, the point $x_\alpha \in \{x_\lambda\} \times {}_\lambda \mathbf{X}$ and so

$$\{x_\alpha\} \times {}_\alpha \mathbf{X} \subset \{x_\lambda\} \times {}_\lambda \mathbf{X} \subset \mathbf{X} \setminus U^\lambda.$$

Hence $\{x_\alpha\} \times {}_\alpha \mathbf{X} \subset \mathbf{X} \setminus \bigcup_{\lambda \in \alpha} U^\lambda$, which equals $\mathbf{X} \setminus U^\alpha$ by (5c).

Conversely, suppose α is a successor ordinal $\alpha = \beta + 1$. Were $\{x_\beta\} \times {}_\beta \mathbf{X}$ a subset of $U^{\beta+1}$ then, by (3i),

$$\{x_\beta\} \times {}_\beta \mathbf{X} \subset \mathbb{P}^\beta(U^{\beta+1}) = U^\beta.$$

This contradicts $M(\beta)$. Consequently, there exists a point $y \in Y^\beta$ such that $\langle x_\beta, y \rangle \times {}_{\beta+1} \mathbf{X}$ is not a subset of $U^{\beta+1}$; hence (since $U^{\beta+1}$ is $[\beta+1]$ -open) it is disjoint from $U^{\beta+1}$. So defining $x_{\beta+1}$ to be $\langle x_\beta, y \rangle$ establishes $M(\beta+1)$. Whew! ◆

Filename: Problems/Topology/tych^.latex
As of: Sunday 06Sep2015. Typeset: 1Feb2022 at 19:36.